J2-9211, Improving the properties of metallic materials by the subcooling process
Despite the huge potential and capability of deep cryogenic treatments (DCT) for improving the properties and performance of materials, these processes are still hardly known and implemented in practice. The main reason is that the development of this technology has been mainly empiric, without a clear understanding of the scientific basics that underline the transformations provoked by deep cryogenic temperatures in the materials. The deep cryogenic treatment is a thermal treatment similar to the heat treatments, with one major difference. The conventional heat treatment is part of the material development program. Deep cryogenic treatment is not and is only “tried out” for some materials. This situation has led to a misuse of these processes in many circumstances and, as a result, to a lack of consistency in the results. Furthermore, although there are many reports on positive effect of deep cryogenic treatments, the metallurgical fundamentals that are behind these processes are not completely understood yet.

The main objective of this project proposal is to move away from trial and error approach and go more in deep in the knowledge of the fundamentals of this technology and to reach an exhaustive and multi-scale knowledge about deep cryogenic treatment and its effects on materials including micro-structural mechanisms and related changes in macroscopic properties. Improved fundamental knowledge is essential in order to prepare clear guidelines as known in conventional heat treatment technologies and to develop more robust and standardized cryogenic processes, which would lead to more predictable results when they are used in industry, including large and heavy equipment. Challenge of the proposed research is to provide a more reliable approach and a more in-depth understanding of the correlations between microstructural changes and properties by overcoming the current trial-and-error approach. In this way new possibilities in terms of further material properties improvement can be expected, not being limited only to steel but also to other metals.
2018/07/01 - 2021/06/30